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SUMMARY

To model mathematically the problem of a rigid body moving below the free surface, a control surface
surrounding the body is introduced. The linear free surface condition of the steady waves created by the
moving body is satis�ed. To describe the �uid �ow outside this surface a potential integral equation is
constructed using the Kelvin wave Green function whereas inside the surface, a source integral equation
is developed adopting a simple Green function. Source strengths are determined by matching the two
integral equations through continuity conditions applied to velocity potential and its normal derivatives
along the control surface. After solving for the induced �uid velocity on the body surface and the
control surface, an integral equation is derived involving a mixed distribution of sources and dipoles
using a simple Green function and one component of the �uid velocity. The normal derivatives of
the �uid velocity on the body surface, namely the m-terms, are then solved by this matching integral
equation method (MIEM).
Numerical results are presented for two elliptical sections moving at a prescribed Froude number

and submerged depth and a sensitivity analysis undertaken to assess the in�uence of these parameters.
Furthermore, comparisons are performed to analyse the impact of di�erent assumptions adopted in the
derivation of the m-terms. It is found that the present method is easy to use in a panel method with
satisfactory numerical precision. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although research on ship motions and sea loads experienced by ships and o�shore structures
excited by seaways has progressed during recent years, many problems still exist. The thing
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of interest here is the interaction between steady and oscillating waves generated by a vessel
with forward speed. This has not been fully solved numerically although the problem is well
posed as discussed by Timman and Newman [1], Newman [2], Inglis and Price [3, 4]. Faltin-
sen [5] expressed the view that to make further improvements in ship motion predictions
at moderate and high Froude number it is felt that one �rst has to study the steady-wave
potential problem in more detail. The �rst major di�culty is to derive the steady-wave dis-
turbance which interacts with the oscillating waves through the free surface condition and
body boundary conditions as described by Newman [6]. For the body boundary condition,
the main di�culty is to determine the so called m-terms (as expressed in Equation (5) herein
and previously de�ned by Timman and Newman [1], and Ogilvie and Tuck [7]), because
its description contains the second-order derivatives of the steady potential. Even for linear
steady Kelvin waves, a totally satisfactory numerical method to obtain the m-terms have not
been fully derived. Beck and Magee [8] found di�culties in developing a numerical di�erence
scheme to solve for the steady potential and they therefore adopted the double-body assump-
tion. For the double body, a robust panel method was presented by Wu [9] to determine the
m-terms for the two-dimensional problem and by Duan [10] for the three-dimensional prob-
lem, but in neither derivation it is easy to include wave e�ects. Therefore, in conclusion, the
m-terms with wave e�ect has not been fully solved even for the linear steady waves case. For
a submerged body with forward speed, the linear free surface condition may be regarded as
a reasonable boundary assumption on which to determine the steady potential. For this case,
a numerical method to calculate the m-terms is described in this paper.
In the proposed approach herein, a control surface is introduced which surrounds the body

and divides the �uid domain into two regions. In the outer region, a potential integral equation
is established using Kelvin wave Green function on the control surface. In the inner region,
a source integral equation using simple Green function is adopted on the control surface
and body surface. The respective source strengths are found by matching the two integral
equations through the continuity condition imposed on velocity potentials and their normal
derivatives along the control surface. After solving for the induced �uid velocity on the body
surface and control surface, under the assumption that the �uid velocity is represented by a
harmonic function, an integral equation is derived containing a mixed distribution of sources
and dipoles from the application of the simple Green function and one of the components of
the �uid velocity. The normal derivatives of the �uid velocity on the body surface, namely the
m-terms, are then solved. Mathematical formulations and theoretical methods describing the
proposed matching integral equation method (MIEM) are given in Sections 2 and 3. Numerical
procedures are described in Section 4. Numerical results and discussions are presented for two
elliptic sections at a selection of Froude numbers and submerged depths in Section 5.

2. MATHEMATICAL FORMULATIONS

Let us consider an in�nitely long cylinder of constant cross-section advancing in a direction
perpendicular to its axis with constant velocity U . The cylinder is fully submerged at a depth
h in water of in�nite depth. Furthermore, as shown in Figure 1, let us introduce a reference
co-ordinate system o− xyz moving with the forward speed of the cylinder. The origin o lies
in the plane of the calm water surface, the ox axis is positive in the direction of forward
speed and the oz axis points positively upwards.
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Figure 1. Illustration of an elliptical section of semi-major axis a and semi-minor axis
b submerged to depth h at its centre. SB denotes the surface of the elliptical section

and SM the boundary of a control surface.

The �uid is assumed incompressible, inviscid and the �ow irrotational allowing the existence
of a velocity potential �(x; z) through the following set of equations:

(i) Based on the steady Neumann–Kelvin assumption, the velocity potential satis�es the
Laplace equation

@2�
@x2

+
@2�
@z2

= 0 (1)

in the whole �uid domain.
(ii) The kinematics condition on the body surface is governed by the relation

@�
@n
=Unx (2)

where nx is the component of the unit inward normal to the body in the x direction.
(iii) On the undisturbed free surface, z=0

@2�
@x2

+ �
@�
@z
=0 (3)

where �= g=U 2 and g is the gravitational constant.
(iv) In water of in�nite depth the condition is

@�
@z
=0 (4)

for z→−∞.
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(v) To complete the boundary-value problem, an appropriate radiation condition is imposed.
A generally accepted condition follows from the assumption that there is no wave far
ahead of the body, but there are waves far behind the body (see, for example, Reference
[11]).

Physically, �(x; z) describes the steady �ow and includes the steady-wave pattern created
around the cylinder. In the linear ship motion theory (see, for example [2]), the steady wave
is assumed small such that the steady �ow interacts with the unsteady �ow only through the
m-terms along the body surface. These are de�ned as

(m1; m2; m3) =−(̃n · ∇)W̃
(m4; m5; m6) =−(̃n · ∇)(̃r × W̃ )

and are due to the oscillatory motions of the body within the steady velocity �eld

W̃ =∇(−Ux + �)
In these expressions ñ=(nx; ny; nz) denotes the inward pointing unit normal to the body and
r̃=(x; y; z). For the present two-dimensional case, the m-terms reduce to

(m1; m3; m5)=−
{
@2�
@x@n

;
@2�
@z@n

;
(
(z + h)

@2�
@x@n

− x @
2�
@z@n

+ nz

(
@�
@x

−U
)
− nx @�@z

)}
(5)

For arbitrary form bodies, the m-terms create computational di�culties because of the
occurrence of the second-order derivatives of the steady potential. The construction of ro-
bust numerical method of high precision to calculate the m-terms with the inclusion of the
steady wave remains unsolved (or unpublished). A matching integral equation method is now
discussed to alleviate this de�ciency.

3. THEORETICAL METHOD

Let us �rst introduce a control surface SM, which fully surrounds the body surface SB, as
shown in Figure 1. The �ow region outside SM is denoted by II and the inner region by I.
By the application of the Green theorem in the �ow region II to the velocity potential

�II(p) and the Green function G(p; q), the integral equation de�ning the value of �II(p) and
its normal derivative along the control surface SM is expressed in the form

��II(p) +
∫
SM
�II(q)

@G(p; q)
@nq

dsq=
∫
SM
G(p; q)

@�II(q)
@n

dsq (6)

where the Green function G(p; q) satis�es the same boundary condition as � with the ex-
ception of the body boundary condition. Here p denotes a �eld point and q a source point.
Wehausen and Laitone [12] expressed this function as

G(p; q)= ln rpq + ln rp �q + 2PV
∫ ∞

0

ek(z+�) cos k(x − �)
k − � dk + 2�e�(z+�) sin �(x − �) (7)
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where p=(x; z); q=(�; �), r2pq=(x− �)2 + (z− �)2; r2p �q = (x− �)2 + (z+ �)2, and PV denotes
a principle integral.
In the �ow region I, following Lamb [13], a source distribution formulation using the

simple Green’s function ln rpq is adopted to represent the velocity potential �I(p) and its
normal derivative along the control surface SM and body surface SB. That is

�I(p) =
∫
SM+SB

�(q) ln rpq dsq (8)

@�I(p)
@n

=−��(p) +
∫
SM+SB

�(q)
@ ln rpq
@np

dsq (9)

To ensure continuity along the control surface SM, matching �ow conditions in regions I and
II gives

�I =�II;
@�I

@n
=
@�II

@n
(on SM) (10)

For consistency of sign convention, a positive direction is denoted by the normal vector at
the control surface as shown in Figure 1. Attention has therefore to be paid to the sign
of the �rst term on the left-hand side of Equation (6) and the right-hand side of Equation
(9). Applying the matching condition to Equation (6) and using the body boundary condi-
tion described in Equation (2), we derive the necessary equations to solve for the unknown
source strength �(q) along the surface SM and SB. After the completion of this calculation,
the �uid velocity components on the surface SM and SB are subsequently determined from the
equation

∇�I(p)=
∫
SM+SB

�(q)∇p ln rpq dsq (11)

Finally, again using the Green theorem in the �ow region I to the �uid velocity ∇�I(p) and
the simple Green function ln rpq, we obtain the following boundary integral equation:

∫
SM+SB

ln rpq
@∇�I(q)
@n

dsq=−�∇�I(p) +
∫
SM+SB

∇�I(q) @ ln rpq
@nq

dsq (12)

As the right-hand side of this equation is known from Equation (11), the second order
derivative

@∇�I
@n

=
@∇�
@n

=
(
@2�
@x@n

;
@2�
@z@n

)

along the surface SM and SB can now be solved. The m-terms are determined from
Equation (5), thus completing a description of the theoretical method.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:655–667



660 W.-Y. DUAN AND W. G. PRICE

4. NUMERICAL PROCEDURES

To remain consistent with the numerical methods normally adopted to solve for the unsteady
motion, a constant panel method is also used to determine the m-terms de�ned in Equation (5).
For the present two-dimensional case, the surface SM and SB are approximated by NM and
NB straight line segments, respectively. Over each segment, the value of

�I; �II;
@�I

@n
;
@�II

@n
; �;
@�I

@x
;
@�I

@z
;
@2�I

@x @n
;
@2�I

@z @n

assumed constant. All boundary conditions are therefore at the mid position of each segment.
Under these assumptions, the boundary integral equation (6) may be approximated by

NM∑
j=1
aij�IIj =

NM∑
j=1
bij
@�IIj
@n

(13)

for i=1;NM. Here

aij= �ij�+
∫
�Sj

@Gij
@nj

ds; �ij=
{
1; i= j;
0; i �= j; bij=

∫
�Sj
Gij ds

and Equations (8) and (9) are approximated by

�Ii =
NM+NB∑
j=1

cij�j for i=1;NM+NB (14)

@�Ii
@n

=
NM+NB∑
j=1

dij�j for i=1;NM+NB (15)

where cij =
∫
�Sj
ln rij ds, dij =−�ij�+

∫
�Sj
(@ ln rij=@ni) ds.

By utilizing the matching condition expressed in Equation (10) on the control surface SM
and satisfying the body boundary condition of Equation (2) on surface SB, we create a system
of linear equations of the form

NM+NB∑
j=1

NM∑
k=1
(aikckj − bikdkj)�j=0 for i=1;NM

NM+NB∑
j=1

dij�j=Unx; i for i=NM+ 1;NM+NB

(16)

A Gaussian elimination process was used to solve this set of linear equations. After deter-
mining �j (j=1;NM + NB) from equation (16), it is easy to solve for the �uid velocity
components along the surface SM and SB by using the following equations:

@�Ii
@x

=
NM+NB∑
j=1

eij�j for i=1;NM+NB (17)
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@�Ii
@z
=
NM+NB∑
j=1

fij�j for i=1;NM+NB (18)

where eij=
∫
�Sj
(@ ln rij=@xi) ds, fij=

∫
�Sj
(@ ln rij=@zi) ds

The second-order derivatives related to the m-terms are determined from the two systems
of linear equations

NM+NB∑
j=1

gij
@2�Ii
@x@n

=
NM+NB∑
j=1

hij
@�Ii
@x

for i=1;NM+NB (19)

NM+NB∑
j=1

gij
@2�Ii
@z@n

=
NM+NB∑
j=1

hij
@�Ii
@z

for i=1;NM+NB (20)

where gij=
∫
�Sj
ln rij ds, hij=−�ij�+

∫
�Sj
(@ ln rij=@nj) ds.

Finally by substituting the solved �uid velocity components and the second-order derivatives
of the steady potential into Equation (5), we complete the construction of a numerical scheme
of study to determine the m-terms on each line segment of surface SB.
The proposed numerical method depends on the calculation of the in�uence coe�cients

aij; bij; cij ; dij ; eij; fij; gij; hij. Duan [14], based on results from Reference [15], derived analytical
solutions for many of the integrals occurring in the de�nitions of the in�uence coe�cients
and the interested reader may consult this reference for details of the technique.

5. NUMERICAL RESULTS AND DISCUSSIONS

Two elliptical sections are examined to illustrate the numerical scheme of study. Figure 1
shows an elliptical section of semi-major axis a and semi-minor axis b submerged to depth
h at its centre. The control surface SM is also selected as an elliptical section where � is the
average normal distance between the body surface SB and the control surface SM.
By way of example, Figure 2 illustrates numerical calculations of the resistance of the ellipti-

cal section for a selection of slenderness ratios a=b=1; 2; 5, submerged ratios b=h=2; 3; 4; 4:5; 5
and forward speeds as denoted by the depth-dependent Froude number value Fh=U=

√
gh from

0.4 to 2.0. In the case of a=b=1(circular section), Havelock [16] presented an analytical so-
lution for the resistance including the contribution of the velocity square terms in Bernoulli’s
formula. Figure 2 shows good agreement between present computations and Havelock’s ana-
lytical results for a= b, h=2b over the chosen speed range. For a=b=2 and 5 the maximum
resistance corresponding to the maximum wave height occurs near Fh=1:0.
To validate and demonstrate the accuracy of the numerical calculations of the m-terms, a

deeply submerged body moving parallel to the ox-axis in water of in�nite depth (h→∞)
is examined. In this case, the analytical solution of m-terms for an ellipse is given by
Lamb [13]

m1 =
U (a+ b)(b3 cos2 	− ba2 sin2 	)

(b2 + c2 sin2 	)1=2(b2 cos2 	+ a2 sin2 	)2
(21)
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Figure 2. Wave resistance of three con�gurations of elliptical section at di�erent submerged depths.

m3 =
U (a+ b)(2ab2 sin 	 cos 	)

(b2 + c2 sin2 	)1=2(b2 cos2 	+ a2 sin2 	)2
(22)

and m5 is evaluated by Equation (5). The angle 	 is measured positive from the ox-axis
in an anticlockwise direction. Figure 3 shows a comparison between numerical results and
the analytical solution for the m-terms on the upper half surface of an ellipse of dimension
a=b=5. The relative error between the analytical and numerical procedures is also shown and
indicates that the maximum error is less than 2% for m1 and m3 and less than 0.5% for m5.
It is also noticed that the minimum relative error corresponds to the maximum value of the
m-terms which change very rapidly.
Two kinds of control surface SM were examined. That is, one parallel and one non-parallel

to SB . In the former, the only variable parameter is the normal distance, �, between SM and
SB as shown in Figure 1. For the non-parallel case, a rectangular control surface is selected
with its centre coincident with that of the ellipse. The parameter � now indicates the nearest
normal distance to the ellipse. Numerical tests show that to keep the errors less than those
shown in Figure 3, the variable, �, should be chosen such that �¿0:1L, where L=2a denotes
the length of the ellipse SB. If a large value of � is selected, the errors reduce.
For a body submerged near the free surface, � is selected to keep the control surface

SM within the water surface. For the results presented herein, control surface SM is selected
parallel to SB with normal distance �=0:2a and segment number on SM taken equal to that
on SB.
Figure 4 illustrates the calculated m-terms for an elliptic blunt body with dimensions a=b=2

at a submerged depth h=3b. Figure 5 shows similar results for an elliptic slender body with
dimensions a=b=5 at a submerged depth of h=4b. In both cases the ellipse travels with
Froude number Fh=0:6; 0:8; 1:0.
The �ndings are compared between results in which free surface e�ects play a promi-

nent role and those derived for the deeply submerged case. Although quantitative data di�er
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Figure 3. Comparison of m-terms between analytical and numerical results for a
deeply submerged ellipse with dimension a=b=5.

between respective m-terms their trends are very similar. Namely, the largest variations in
the data sets occur in the regions 	=0◦ and 180◦, i.e. bow and stern. The blunt body
shows variation distributed over a greater surface region whereas the slender body indicates
a more con�ned distribution with m-terms of greater magnitude. Speed in�uence is more
noticeable over the whole surface of the blunt body whereas for the slender body its in�uence
is only observed in the bow and stern regions. In the data presented for the m5-terms, the
simple term adopted in a strip theory and three-dimensional theory is included for illustrative
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Figure 4. In�uence of forward speed on the calculated m-terms associated with an ellipse of dimensions
a=b=2 at a submerged depth h=3b. The in�nite �uid solution refers to a deeply submerged ellipse.

purposes. Figure 4 shows that for non-slender bodies this approximation generates large errors
over the whole body surface whereas for slender bodies the bow and stern regions are the
only areas of concern. Furthermore, overall the calculations for the deeply submerged body or
the in�nite �uid solution follow similar trends to the other case considered and in particular,
its values are comparable with those derived for Fh=0:6 indicating that it is an acceptable
approximation for the speed range 06Fh60:6 for elliptic blunt and slender bodies (Figure 6).
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Figure 5. In�uence of forward speed on the calculated m-terms associated with an ellipse of dimensions
a=b=5 at a submerged depth h=4b. The in�nite �uid solution refers to a deeply submerged ellipse.

6. CONCLUSIONS

An MIEM is proposed for the calculation of the m-terms problem associated with a submerged
body advancing near the free surface. This study demonstrates the developed approach to be
robust high precision for arbitrary body con�gurations. Numerical calculations show that for
a submerged body, the in�nite �uid solution for the m-terms is an engineering approximation
for the case of su�cient submerged depth, and the simple theoretical expressions for the
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Figure 6. In�uence of submerged depth on the calculated m-terms associated with an
ellipse of dimensions a=b=5 travels with Froude number Fh=1:0. The in�nite �uid

solution refers to a deeply submerged ellipse.

m-terms compared to numerical predictions show marked di�erence at bow and stern even
for a very slender body. For the slender body near a free surface (h¡2a), wave in�uences
a�ect the value of the m-terms especially near the bow and stern. This may have important
consequences in predicting the pitching motion of the body.
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This study requires extension to three-dimensional body forms with numerical simulation
combined with unsteady motion prediction.
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